Imagen de portada de Amazon
Imagen de Amazon.com

Monitoring and control of electrical power systems using machine learning techniques / edited by Emilio Barocio Espejo, Felix Rafael Segundo Sevilla, Petr Korba.

Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Detalles de publicación: United Kingdom: Elsevier, 2023Descripción: xi, 339 pages : illustrations (chiefly color) ; 23 cmTipo de contenido:
  • text
Tipo de medio:
  • unmediated
ISBN:
  • 9780323999045
Tema(s): Clasificación CDD:
  • 621.3192 M744
Contenidos parciales:
Derivation of generic equivalent models for distributin network analysis using artificial intelligence techniques / Eleftherios O. Kontis, Theogilos A. Papadopoulos, Maheruddin H. Syed, Grigoris K. Papagiannis -- Distubance dataset development for machine-learning-based power quality monitoring in distributed generation system: a practical guide / Oswaldo Isaac Cortes Robles, Emilio Barocio Espejo, Juan Segundo Ramírez, Julio Cesar Hernández Ramírez -- Advances in compression algorithms for PMU and smart meter data based on tensor decomposition / Betsy Sandoval Guzmán, Emilio Baocio Espejo, Petr Korba, Felix Rafael Segundo Sevilla.
Resumen: Monitoring and Control of Electrical Power Systems using Machine Learning Techniques bridges the gap between advanced machine learning techniques and their application in the control and monitoring of electrical power systems, particularly relevant for heavily distributed energy systems and real-time application. The book reviews key applications of deep learning, spatio-temporal, and advanced signal processing methods for monitoring power quality. This reference introduces guiding principles for the monitoring and control of power quality disturbances arising from integration of power electronic devices and discusses monitoring and control of electrical power systems using benchmark test systems for the creation of bespoke advanced data analytic algorithms.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Código de barras
Libro 3 días Libro 3 días Biblioteca Rafael Meza Ayau Colección General 621.3192 M744 2023 (Navegar estantería(Abre debajo)) 01 Disponible 72692
Libro 3 días Libro 3 días Biblioteca Rafael Meza Ayau Colección General 621.3192 M744 2023 (Navegar estantería(Abre debajo)) 02 Disponible 72693
Libro 3 días Libro 3 días Biblioteca Rafael Meza Ayau Colección General 621.3192 M744 2023 (Navegar estantería(Abre debajo)) 03 Disponible 72694

Includes bibliographical references and index.

Derivation of generic equivalent models for distributin network analysis using artificial intelligence techniques / Eleftherios O. Kontis, Theogilos A. Papadopoulos, Maheruddin H. Syed, Grigoris K. Papagiannis -- Distubance dataset development for machine-learning-based power quality monitoring in distributed generation system: a practical guide / Oswaldo Isaac Cortes Robles, Emilio Barocio Espejo, Juan Segundo Ramírez, Julio Cesar Hernández Ramírez -- Advances in compression algorithms for PMU and smart meter data based on tensor decomposition / Betsy Sandoval Guzmán, Emilio Baocio Espejo, Petr Korba, Felix Rafael Segundo Sevilla.

Monitoring and Control of Electrical Power Systems using Machine Learning Techniques bridges the gap between advanced machine learning techniques and their application in the control and monitoring of electrical power systems, particularly relevant for heavily distributed energy systems and real-time application. The book reviews key applications of deep learning, spatio-temporal, and advanced signal processing methods for monitoring power quality. This reference introduces guiding principles for the monitoring and control of power quality disturbances arising from integration of power electronic devices and discusses monitoring and control of electrical power systems using benchmark test systems for the creation of bespoke advanced data analytic algorithms.

No hay comentarios en este titulo.

para colocar un comentario.
Compartir