Imagen de portada de Amazon
Imagen de Amazon.com

Deep learning / Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Series Adaptive computation and machine learningDetalles de publicación: Massachusetts: The MIT Press, 2016Descripción: xxii, 775 p. : il. (some color) ; 24 cmTipo de contenido:
  • text
Tipo de medio:
  • unmediated
ISBN:
  • 9780262035613
Tema(s): Clasificación CDD:
  • 006.31 G651
Contenidos:
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
Resumen: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro 3 días Libro 3 días Biblioteca Rafael Meza Ayau Colección General 006.31 G651 2016 (Navegar estantería(Abre debajo)) 01 Disponible 72026

Includes bibliographical references (pages 711-766) and index.

Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha